Across several paradigms and tasks, researchers have reported a measurable processing delay when participants have to switch tasks (for a review, see e.g., Monsell, 2003) or when passages switch languages (Kolen, 1986). Switch costs have been reported when words and pronounceable nonwords alternate between languages (e.g., Dalrymple-Alford, 1989, Experiment 2; Granger & Beaulieu, 1987; von Strohrib & Green, 1987).

Behavioral measures:

- Asymmetrical switch costs: larger switch costs from a concrete to an abstract word compared to the other way around.
- A memory advantage for emotion words has been reported in both laboratory (e.g., Alford, 1985, Experiment 2; Grainger & Arenberg, 1999): (a) Concreteness (b) Imagery (c) Context availability (d) Number of unique word associations.

Word Type Effects

- Research has revealed distinct characteristics that differentiate between word types:
 - Paivio’s (1971, 1986) dual coding theory distinguishes between concrete and abstract word representations.
 - Concrete, abstract, and emotion words differ along several dimensions (Altarriba, Bauer, & Benvenuto, 1999):
 - Concreteness
 - Imagery
 - Context availability
 - Number of unique word associations.

- A memory advantage for emotion words has been reported in both laboratory (e.g., Alford, 1985, Experiment 2; Grainger & Arenberg, 1999): (a) Concreteness (b) Imagery (c) Context availability (d) Number of unique word associations.

- An asymmetrical switch effect: larger switch costs from concrete to abstract words compared to the other way around.

The Current Study

Two purposes:

- Investigate a new type of switching with English words.
- Distinguish between the mental representations of concrete, abstract, and emotion words, using an LDT and incidental learning paradigm.

Predictions:

- Switching word type from one trial to another (e.g., concrete to abstract) will create a processing delay akin to switching languages or tasks.
- Word type will affect LDT performance: Switch costs will be lower for words following emotion words.

Method

- **Participants:**
 - N = 46 University at Albany, SUNY undergraduate students (M = 19–50 years), all English monolingual speakers.
 - All participants were screened with the Beck Depression Inventory (BDI-II; Beck, Steer, & Brown, 1996) and the State Trait Anxiety Inventory (STAI; Spielberger, Gorsuch, Lushene, Vagg, & Jacobs, 1983) (M = 5.02 and M = 31.28, respectively).
 - Lexical Decision Tasks (LDT) were used as the primary behavioral measure.
 - Asymmetrical switch costs: larger switch costs from a concrete to an abstract word compared to the other way around.

- **Stimuli:**
 - 75 words were selected from the Affective Norms for English Words (ANEW; Bradley & Lang, 1999) database: 25 words for each word type.
 - The English Lexicon Project (ELP; Balota, Cortese, Hutchison, Awh, et al., 2004) was used to match all words on length, frequency, and LDT RTs.
 - Words were pseudorandomly arranged, with an equal number of stay (e.g., concrete-concrete) and switch (abstract-concrete) trials.
 - The University of South Florida Free Association Norms (Nelson, McEvoy, & Schreiber, 1998) was used to ensure that forward and backward association values from one word to another were 0.
 - Nonwords were created by changing one vowel; all were pronounceable according to English phonological rules.
 - No trial type (concrete/abstract/emotion, stay/switch, word/nonword) was repeated more than three times in a row.

Word Type

- Length: 5.42 words
- Frequency: 1.17 occurrences per million
- LDT RT (ms): 630 ms
- Arousal: 4.25
- Valence: 3.14

Results

- Main effect of trial type was significant, with faster RTs to stay trials (M = 628 ms) than to switch trials (M = 642 ms).
- RTs to the three word types were equivalent.
- Concrete = 631 ms
- Abstract = 636 ms
- Emotion = 637 ms

- The 2 (trial type) x 3 (word type) interaction was significant: RTs were fastest when the target word was preceded by an emotion word.
- Incidental learning was assessed with a surprise free recall task after the LDT: Recall was very low, though more emotion words were recalled than concrete or abstract words.

Discussion

- Varying word type led to significant switch costs: RTs were significantly faster when a target’s word type matched that of the previous word.
- LDT performance was facilitated when the target was preceded by an emotion word.
- The emotion advantage was demonstrated by LDT and free recall performance.

Implications and Future Directions

- Word type can influence LDT performance, from trial to trial.
- How does word type interact with language switching?
 - What is the role of language dominance?
 - Will other word categories show these kinds of switch costs?
 - Pick a word type (e.g., concrete vs. abstract) and an emotion (e.g., happy vs. sad).
 - Can we model these findings to show the relationship between concrete, abstract, and emotion words?