Both Males and Females Process Disgust Slower Than Neutral and Anger.

RESULTS—Reaction Time
- Main effect of word category: $F(4, 520) = 4.771, p = .001, \eta_p^2 = .03$
- No main effect of sex: $F(1, 130) = .131, p = .718, \eta_p^2 = .001$
- No interaction between word category and sex: $F(4, 520) = .291, p = .884, \eta_p^2 = .002$

RESULTS—Errors
- Main effect of word category: $F(4, 520) = 22.260, p < .000, \eta_p^2 = .145$
- No main effect of sex: $F(1, 130) = 3.530, p = .063, \eta_p^2 = .026$
- No interaction between word category and sex: $F(4, 520) = .574, p = .682, \eta_p^2 = .004$

Contact us: mavery@albany.edu | www.albany.edu/coglanlab

INTRO
- **Circumplex Model** uses valence and arousal to measure emotion.
- **Discrete Emotion Model** claims that there are basic emotion categories, (happiness, sadness, anger, fear, and disgust) which have unique effects on performance in visual word recognition tasks, beyond valence and arousal (Briesemeister et al., 2011).

Evolutionary Theory
- “[Females] showed superior memory for the most intensely negative pictures even when subjective ratings of arousal were equated” (Canli et al., 2002, p. 2).
- Evolutionary theory suggests that there is a distinction between the neurocognitive encoding of emotions in males and females. This impacts emotion processing and subsequent memory. Together these effects provide support for a female negativity bias (Lithari, 2010).

METHOD
- N = 132 undergraduates
- 5 (Emotion: Happy, Anger, Fear, Disgust, Neutral) x 2 (Sex: Male, Female) Mixed factorial design
- lexical decision task: Participants respond whether the stimulus was a word or nonword
- Reaction time data and errors were recorded
- There were 80 stimuli in total; half of the stimuli were words and half were nonwords. The word stimuli consisted of 40 nouns from a normed dataset (Stevenson et al., 2007)
- Words for all five categories were matched on various dimensions using the program “Match” (van Casteren & Davis, 2007).